
Arduino Is..

•An open-source/-hardware microcontroller
device
•Designed to sense
•Designed to control
•Easy to program
•Easy to integrate into designs
•Developed by art-technologists to be
practical for simple and complex designs with
minimal hassle

Introduction To Device Art With The Arduino

Now youʼll learn how to build and program an
interactive device.

Anatomy of an Interactive Device
All of the objects we will build using Arduino follow a very
simple pattern that we call the “Interactive Device”. The
Interactive Device is an electronic circuit that is able to sense
the environment using sensors (electronic components that
convert real-world measurements into electrical signals).
The device processes the information it gets from the
sensors with behavior thatʼs implemented as software. The
device will then be able to interact with the world using
actuators, electronic components that can convert an electric
signal into a physical action.

Thursday, January 12, 2012

Microcontrollers

What is a Microcontroller?

- A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer on a single integrated circuit
containing a processor core, memory, and programmable input/output peripherals. Program memory in the form of
NOR flash or OTP ROM is also often included on chip, as well as a typically small amount of RAM. Microcontrollers
are designed for embedded applications, in contrast to the microprocessors used in personal computers or other
general purpose applications.

- Arduino is a tool for making computers that can sense and control more of the physical world than your desktop
computer. It's an open-source physical computing platform based on a simple microcontroller board, and a
development environment for writing software for the board.

Arduino can be used to develop interactive objects, taking inputs from a variety of switches or sensors, and
controlling a variety of lights, motors, and other physical outputs. Arduino projects can be stand-alone, or they can
be communicate with software running on your computer (e.g. Flash, Processing, MaxMSP.) The boards can be
assembled by hand or purchased preassembled; the open-source IDE can be downloaded for free.

The Arduino programming language is an implementation of Wiring, a similar physical computing platform, which is
based on the Processing multimedia programming environment.

Thursday, January 12, 2012

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Flash_memory#NOR_flash
http://en.wikipedia.org/wiki/Flash_memory#NOR_flash
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Personal_computer

Why Use Arduino

- There are many other microcontrollers and microcontroller platforms available for physical computing. Parallax Basic
Stamp, Netmedia's BX-24, Phidgets, MIT's Handyboard, and many others offer similar functionality.

- Inexpensive - Arduino boards are relatively inexpensive compared to other microcontroller platforms. The least
expensive version of the Arduino module can be assembled by hand, and even the pre-assembled Arduino modules
cost less than $50

- Cross-platform - The Arduino software runs on Windows, Macintosh OSX, and Linux operating systems. Most
microcontroller systems are limited to Windows.

- Simple, clear programming environment - The Arduino programming environment is easy-to-use for beginners, yet
flexible enough for advanced users to take advantage of as well. For teachers, it's conveniently based on the
Processing programming environment, so students learning to program in that environment will be familiar with the
look and feel of Arduino

- Open source and extensible software- The Arduino software and is published as open source tools, available for
extension by experienced programmers. The language can be expanded through C++ libraries, and people wanting to
understand the technical details can make the leap from Arduino to the AVR C programming language on which it's
based. SImilarly, you can add AVR-C code directly into your Arduino programs if you want to.

- Open source and extensible hardware - The Arduino is based on Atmel's ATMEGA8 and ATMEGA168
microcontrollers. The plans for the modules are published under a Creative Commons license, so experienced circuit
designers can make their own version of the module, extending it and improving it. Even relatively inexperienced users
can build the breadboard version of the module in order to understand how it works and save money.

Thursday, January 12, 2012

About the Arduino

14 Digital IO pins (pins 0–13)
These can be inputs or outputs, which is specified by the sketch you
create in the IDE.

6 Analog In pins (pins 0–5)
These dedicated analogue input pins take analogue values (i.e., voltage
readings from a sensor) and convert them into a number between 0 and
1023.

6 Analogue Out pins (pins 3, 5, 6, 9, 10, and 11)
These are actually six of the digital pins that can be reprogrammed for
analogue output using the sketch you create in the IDE.

The board can be powered from your computer’s USB port, most USB
chargers, or an AC adapter (9 volts recommended, 2.1mm barrel tip,
center positive).

If there is no power supply plugged into the power
socket, the power will come from the USB board, but as soon as you plug
a power supply, the board will automatically use it.

Thursday, January 12, 2012

Introduction To Device Art With The Arduino

Arduino Mini

•Uses Atmega168
•Twice The Program Space As The Atmega8,

Designed For Embedding In Projects
•Uses Same Arduino IDE

Sensors and Actuators

Sensors and actuators are electronic components that allow a piece of
electronics to interact with the world.

As the microcontroller is a very simple computer, it can process only
electric signals (a bit like the electric pulses that are sent between
neurons in our brains). For it to sense light, temperature, or other
physical quantities, it needs something that can convert them into
electricity.

In our body, for example, the eye converts light into signals that get
sent to the brain using nerves. In electronics, we can use a simple
device called a light-dependent resistor (an LDR or photoresistor) that
can measure the amount of light that hits it and report it as a signal that
can be understood by the microcontroller.

Once the sensors have been read, the device has the information
needed to decide how to react. The decision-making process is
handled by the microcontroller, and the reaction is performed by
actuators. In our bodies, for example, muscles receive electric signals
from the brain and convert them into a movement. In the electronic
world, these functions could be performed by a light or an electric
motor.

Thursday, January 12, 2012

Plug in your Arduino and then plug in the other end of
the cord into one of your serial ports. Now go back to
your Arduino Environment window...

Thursday, January 12, 2012

The Software (IDE)

The IDE (Integrated Development Environment) is a special
program running on your computer that allows you to write
sketches for the Arduino board in a simple language modeled after
the Processing www.processing.org) language. The magic
happens when you press the button that uploads the sketch to the
board: the code that you have written is translated into the C
language (which is generally quite hard for a beginner to use), and
is passed to the avr-gcc compiler, an important piece of open
source software that makes the final translation into the language
understood by the microcontroller. This last step is quite important,
because it’s where Arduino makes your life simple by hiding away
asmuch as possible of the complexities of programming
microcontrollers.

About the Arduino Software

Thursday, January 12, 2012

http://www.processing.org
http://www.processing.org

The Arduino Environment

Toolbar
Tabs

Text Editor

Message Area

Text Area

The Arduino development environment
contains a text editor for writing code, a
message area, a text console, a toolbar
with buttons for common functions, and
a series of menus. It connects to the
Arduino hardware to upload programs
and communicate with them.

Software written using Arduino are
called sketches. These sketches are
written in the text editor. It has features
for cutting/pasting and for searching/
replacing text. The message area gives
feedback while saving and exporting
and also displays errors. The console
displays text output by the Arduino
environment including complete error
messages and other information. The
toolbar buttons allow you to verify and
upload programs, create, open, and
save sketches, and open the serial
monitor:

Thursday, January 12, 2012

The Arduino Environment

Thursday, January 12, 2012

Selecting the Correct Serial Port
for Mac

Thursday, January 12, 2012

Selecting the Correct Serial Port
for Windows

Thursday, January 12, 2012

Selecting the Correct Arduino Board

Thursday, January 12, 2012

Arduino IDE

Built In Help

Arduino IDE

Digital I/O

 * pinMode(pin, mode)
 * digitalWrite(pin, value)
 * int digitalRead(pin)
 * unsigned long pulseIn(pin, value)

Analog I/O

 * int analogRead(pin)
 * analogWrite(pin, value) - PWM

Handling Time

 * unsigned long millis()
 * delay(ms)
 * delayMicroseconds(us)

Some Basic Functionality

Microcontroller

USB

Reset Button

Digital I/O

Analog Input

Arduino IDE

An Arduino program run in two parts:

 * void setup()
 * void loop()

setup() is preparation, and loop() is execution.
The loop section is the code to be executed -- reading
inputs, triggering outputs, etc.
The loop section runs continuously, over-and-over so long
as the Arduino is powered.

void setup() {
 Serial.begin(9600);
}

void loop () {
 Serial.println("Hello World!");
 delay(1000);
}

Tutorial 1: Hello World, Serial Port Edition
First, Type In Code

Arduino IDE

Then Verify (Compile Your Code)

..Fix Any Bugs And Errors

Arduino IDE

Once Your Code Is Free Of Errors, Upload Compiled
Code To Your Arduino Board

Arduino IDE

Monitor Your Program’s Output Using The “Serial
Monitor” Button

Blinking an LED

The LED blinking sketch is the first program that you
should run to test whether your Arduino board is
working and is configured correctly. It is alsousually
the very first programming exercise someone does
when learningto program a microcontroller. A light-
emitting diode (LED) is a small electroniccomponent
that’s a bit like a light bulb, but is more efficient
andrequires lower voltages to operate.

Your Arduino board comes with an LED preinstalled.
It’s marked “L”. You can also add your own LED—
connect it as shown in Figure 4-2.
K indicates the cathode (negative), or shorter lead; A
indicates the anode (positive), or longer lead.

Once the LED is connected, you need to tell Arduino
what to do. This is
done through code, that is, a list of instructions that
we give the microcontroller to make it do what we
want.

Blinking an LED

Thursday, January 12, 2012

Opening our First Sketch

Thursday, January 12, 2012

Tutorial 2: Hello World, LED Edition

LED

GND

DIGITAL 13 LED

Lets go through the code and figure out why our LED
is blinking...

Thursday, January 12, 2012

What is all of this?

Thursday, January 12, 2012

Now that the code is in your IDE, you need to verify that it is correct. Press
the “Verify” button. If everything is correct,
youʼll see the message “Done compiling” appear at the bottom of the
Arduino IDE. This message means that the Arduino IDE has translated
your sketch into an executable program that can be run by the board, a
bit like an .exe file in Windows or an .app file on a Mac.

At this point, you can upload it into the board: press the Upload to I/O
Board button (see Figure 4-3). This will reset the board, forcing it to stop
what itʼs doing and listen for instructions coming from the USB port. The
Arduino IDE sends the current sketch to the board, which will store it in
its memory and eventually run it.

You will see a few messages appear in the black area at the bottom of the
window, and just above that area, youʼll see the message “Done uploading”
appear to let you know the process has completed correctly. There
are two LEDs, marked RX and TX, on the board; these flash every time
a byte is sent or received by the board. During the upload process, they
keep flickering.

Assuming that the sketch has been uploaded correctly, you will see the
LED “L” turn on for a second and then turn off for a second. If you installed
a separate LED as shown back in Figure 4-2, that LED will blink, too.
What you have just written and ran is a “computer program”, or sketch,
as Arduino programs are called. Arduino, as Iʼve mentioned before, is a
small computer, and it can be programmed to do what you want. This is
done using a programming language to type a series of instructions in
the Arduino IDE, which turns it into an executable for your Arduino board.

Thursday, January 12, 2012

Brackets, Set Up, & Loops

Notice the presence of curly brackets, which are used to group together
lines of code. These are particularly useful when you want to give a name
to a group of instructions. If youʼre at dinner and you ask somebody,
“Please pass me the Parmesan cheese,” this kicks off a series of actions
that are summarized by the small phrase that you just said.

As weʼre humans, it all comes naturally, but all the individual tiny actions required
to do this must be spelled out to the Arduino, because itʼs not as powerful as our brain. So to group together a
number of instructions, you stick a { before your code and an } after.

You can see that there are two blocks of code that are defined in this way
here. Before each one of them there is a strange command:
void setup()

This line gives a name to a block of code. If you were to write a list of
instructions that teach Arduino how to pass the Parmesan, you would
write void passTheParmesan() at the beginning of a block, and this block
would become an instruction that you can call from anywhere in the
Arduino code.

These blocks are called functions. If after this, you write
passTheParmesan() anywhere in your code, Arduino will execute those
instructions and continue where it left off.

Thursday, January 12, 2012

The Code Step by Step

COMMENTS

/* insert text here */
This is a paragraph comment. This text is not actually ʻreadʼ by your arduino. This is helpful to label your sketch to
remind yourself or other users (if you share it), what the code below actually does

// Example 01 : Blinking LED
A comment is a useful way for us to write little notes. The preceding title
comment just reminds us that this program, Example 01, blinks an LED. This is just like the above however, when
you use the // you are only commenting a line of code rather than an entire paragraph

Thursday, January 12, 2012

Arduino expects two functions to exists—one called setup() and one
called loop().

setup() is where you put all the code that you want to execute once at the
beginning of your program and loop() contains the core of your program,
which is executed over and over again.

This is done because Arduino is not like your regular computer—it cannot run multiple programs at the
same time and programs canʼt quit. When you power up the board, the code runs; when you want to stop, you
just turn it off.

Brackets, Set Up, & Loops

Thursday, January 12, 2012

int ledPin = 13 // LED connected to digital pin 13

int is like an automatic search and replace for your code; in this
case, itʼs telling Arduino to write the number 13 every time the word LED
appears. The replacement is the first thing done when you click Verify or
Upload to I/O Board (you never see the results of the replacement as itʼs
done behind the scenes). We are using this command to specify that the
LED weʼre blinking is connected to the Arduino pin 13.

void setup()
This line tells Arduino that the next block of code will be called setup(). The loop() method runs whatever is
inside of the brackets { } over and over again as long as the Arduino has power

{

With this opening curly bracket, a block of code or messages to the arduino begins.

The Code Step by Step

Thursday, January 12, 2012

pinMode(ledPin, OUTPUT); // sets the digital pin as output

Finally, a really interesting instruction. pinMode tells Arduino how to configure
a certain pin. Digital pins can be used either as INPUT or OUTPUT.
In this case, we need an output pin to control our LED, so we place the
number of the pin and its mode inside the parentheses. pinMode is a function,
and the words (or numbers) specified inside the parentheses are
arguments. INPUT and OUTPUT are constants in the Arduino language.
(Like variables, constants are assigned values, except that constant values are predefined
and never change).

}

This closing curly bracket signifies the end of the setup() function.

The Code Step by Step

Thursday, January 12, 2012

void loop()
{

loop() is where you specify the main behaviour of your interactive device.
It will be repeated over and over again until you switch the board off.

digitalWrite(ledPin, HIGH); // turns the LED on

As the comment says, digitalWrite() is able to turn on (or off) any pin that
has been configured as an OUTPUT. The first argument (in this case, LED)
specifies which pin should be turned on or off (remember that LED is a
constant value that refers to pin 13, so this is the pin thatʼs switched). The
second argument can turn the pin on (HIGH) or off (LOW).

Imagine that every output pin is a tiny power socket, like the ones you
have on the walls of your apartment. European ones are 230 V, American
ones are 110 V, and Arduino works at a more modest 5 V. The magic here
is when software becomes hardware. When you write digitalWrite(LED,
HIGH), it turns the output pin to 5 V, and if you connect an LED, it will light
up. So at this point in your code, an instruction in software makes something
happen in the physical world by controlling the flow of electricity to
the pin. Turning on and off the pin at will now let us translate these into
something more visible for a human being; the LED is our actuator.

The Code Step by Step

Thursday, January 12, 2012

delay(1000); // waits for a second

Arduino has a very basic structure. Therefore, if you want things to happen
with a certain regularity, you tell it to sit quietly and do nothing until it is
time to go to the next step. delay() basically makes the processor sit
there and do nothing for the amount of milliseconds that you pass as
an argument. Milliseconds are thousandths of seconds; therefore, 1000
milliseconds equals 1 second. So the LED stays on for one second here.

The Code Step by Step

Thursday, January 12, 2012

digitalWrite(ledPin, LOW); // turns the LED off

This instruction now turns off the LED that we previously turned on. Why
do we use HIGH and LOW? Well, itʼs an old convention in digital electronics.
HIGH means that the pin is on, and in the case of Arduino, it will be set at
5 V. LOW means 0 V. You can also replace these arguments mentally with
ON and OFF.

delay(1000); // waits for a second

Here, we delay for another second. The LED will be off for one second.

}

This closing curly bracket marks end of the loop function.

The Code Step by Step

Thursday, January 12, 2012

Challenge: Change how fast your LED blinks

Thursday, January 12, 2012

Tutorial 5: Going Mobile

1. Connect Clip (Black) to GND

2. Connect Clip (Red) to 9V

GND

9 Volts

Jumper From Battery To Breadboard To Arduino
(Battery Clip Wires Too Narrow For Arduino..)

9 Volts

GND

