
basal firn layer, coupled to removal of gases by ver-
tical advection of air caused by compression of the
firn. The effusional enrichment ratio for two isotopes
is controlled by the kinetic fractionation factor a =
(M/M)112, and the resulting isotope enrichment is
given by the Rayleigh equation:

R/Ro = 1 - FL)(

where FL is the fraction of component N lost by
effusion through a molecular leak. Because effu-
sional enrichment depends on the fractional gas
loss, the expected gravitational and effusional en-
richments cannot be compared unless FL is speci-
fied. We used the mean 180/16Q enrichment in the
ice samples to calculate a fictive value of 1.79% for
FL(O2) and then scaled the FL values for other com-
ponents to FL(O2). Thus, [1 - FL(j)] = [1 - FL(02)] (j),
where ox(j) = (M02/M)1 2, the fractionation factor for
any component j versus 02' The resulting FL values
(1 .91 % for N2 and 1 .69% for 36Ar) were then used to
calculate the other effusional ratio enrichments,
scaled to FL(O2). The effusional and gravitational en-
richments (Z = 60 m, T = -20°C) for the various
ratios are as follows:

Component

815N
8180
84OAr
A(02/N2)
A(Ar/N2)
A.(84Kr/36Ar)
A(1 32Xe/36Ar)

A(Eff)
per mil)
0.33
0.54
0.87
1.24
3.14
5.90
8.18

A(Grav)
(per mil)
0.28
0.56
1.12
1.11
3.35
13.50
26.85

The gravitational and effusional ratio enrichments
are indistinguishable within limits of analytical ac-
curacy for all these ratios, with the exception of the
84Kr/36Ar and ' 32Xe/36Ar pairs, for which the grav-
itational enrichments are 2.3 and 3.3 times the
calculated effusional effects, respectively. More-
over, the predicted ratio of 84Kr/36Ar to 180/160
enrichments is 24.1 for gravitational separation ver-
sus only 10.9 for effusion. Note that the effusional
enrichment ratio is constant over the range of Fig. 2
because, to first order, the ratio is simply a(36/
32)[o(84/36) - 1]/[ot(34/32) - 1] = 10.9. (Here, the
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spectrometer through 1205 reagent to remove all
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capillary effects during pumping. The measured Ar/
N2 ratios are consistent with enrichments expected
for either gravitational or effusional fractionation and
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River Meandering as a Self-Organization Process
Hans-Henrik St0Ium

Simulations of freely meandering rivers and empirical data show that the meandering
process self-organizes the river morphology, or planform, into a critical state character-
ized by fractal geometry. The meandering process oscillates in space and time between
a state in which the river planform is ordered and one in which it is chaotic. Clusters of
river cutoffs tend to cause a transition between these two states and to force the system
into stationary fluctuations around the critical state.

The meandering river system is charac-
terized by recurrent river planform pat-
terns, repeated with little variation from
one river to the next irrespective of their
magnitude and from one scale to another
within each river. This consistency sug-
gests that a higher level of processes forms
by self-organization from the physical pro-
cesses of deposition and erosion operating
in the system. These physical processes
may be described by continuum fluid me-
chanics. Although meandering dynamics
can be simulated from models based on
continuum mechanics, such models reveal
little about the holistic, spatiotemporal
properties of the meandering process, for
example, the hierarchical, fractal geome-
try of the river planform. [Self-affine frac-
tal scaling of meandering river planforms
was first suggested in (1) and has been
analyzed in (2, 3).] It has therefore been
suggested that meandering needs to be
understood in terms of chaotic dynamics
and self-organization (4-6). In this report,
I use a fluid mechanical model developed
by Parker, Howard, and co-workers (7, 8)
to explore the dynamical properties of me-
andering by simulation.

Meandering is caused by the operation
of two opposing processes (4), which are
linked by a complex feedback that is partly
under local geometrical control: lateral mi-
gration acts to increase sinuosity, whereas
cutoffs (the formation of oxbow lakes) act
to decrease it. Lateral migration results from
bend erosion and deposition (4, 9). Cutoffs
arise from a local geometry (Kinoshita
shape), which is created by the lateral mi-
gration process (4, 10, 11).

Department of Earth Sciences, University of Cambridge,
Cambridge CB2 3EQ, UK.

The state of the system is conveniently
measured by the dimensionless parameter
sinuosity

s = LfC

where L is the length of the river along its
course between two points and e is the
shortest length between the same points.
The quantities L and f are measured in
units of average width, w. When the river is
straight, sinuosity has a minimum value of
1. In principle, no maximum value exists.
Sinuosity is related to the information con-
tent and symmetry of the system (5). Ox-
bow lakes have a finite length range, with a
minimum value of -7 and a maximum of
40w.
In the simulations (Fig. 1, A and B), the

river typically formed two coexisting do-
mains, one with consistently high sinuosity
(mean s 3.5) and one with consistently
low sinuosity (mean s 2.7). Because a
straight line is the most ordered state the
river can take (zero entropy, perfect axial
symmetry), the low-sinuosity regions repre-
sent a distinctly more ordered state than the
high-sinuosity regions (weak versus strong
asymmetry).

The low-sinuosity domains in Fig. 1, A
and B, formed as a result of a clustering of
cutoff events. Each cutoff has a tendency to
trigger other cutoffs in its vicinity by caus-
ing accelerated local change, and this may
generate a cluster of cutoffs in space and
time. Similarly, in natural rivers, successive
cutoffs occur only rarely with the same
spacing or at regular intervals, and so clus-
ters are formed.
When the simulated river was locally

straightened by cutoffs, the dynamics died
down to create a window of slow change
that persisted for awhile, before a gradual
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A
3.05

2.88

2.95 L...

2.92

3.20

3.58

3.216

3.31

buildup of .sinuosity. Such k)w!-sinuosiry doC-
mains alre intermittent windowXss of relaltivTe
order in the chlaotic higyh-sinuosity state (5,
12). Within this state, chcangJe is raprid alnd
the system has little capacity for retaining
spaltiall informaltion (hardly any single me-
ander persisted in recognizalble form for
more than ~400 iterations).

The effect of curot-ts depends on the
stalte of the system. Qutoff-s in the chaotic
stalte are likely to bring thew system over to
the ordered stalte (Figs. lA, iB, and 2GC),
w;hereas cutoffs in the (mature ) ordered
stare are likely to bring( aboult chaos (Fig.
2A). The immediate ef-fect of cutoffs is
ala\Cy>s to lower sinulosity, bult their long-
term effect is coXntext-depnendent. In the
ordlered stalte, cutoffs renld tol induce strong
axiall alsymmetries (createt sharp bends),
which alre subsequlently almplified by the
mealndering process (Fig. 2B). In the cha-
otic stalte, cutotff-s rend to remove the most
asymlmetric parts of the river (lalrge alnd
often irregulalr Kinoshital meanders), caus-
ingJ the system to revecrt balck to al state wnith
weaCck alXiall and bend asy,mmletries (Fig. 2C).

In the simulaltions, an increalse in sinul-
osity is Ccausedl by, the slows enlalrgement of
river bends thalt is in turnl causedA by bank
erosion (Fig. 2B). A dlecrealse in sinulosity is
cautsCed by cutoff events (Pig. 2C). These
opnposing, processes self-or,ganize the sinuos-
iry into a stealdy state aroundl a mean valule
of si 3.14, the sinuositv of a circle (Tr-) (13,
14) (Fig. 3A). The meanl vlue of aT folloxs
from the fractal g(eometry of the plalnform
(14). This is the intermediate sinuosity val-
uLe characterizing the transitions between
domains of the twTo states seen in Fig. 1, A

B E .

a)
E

-- Space --

Fig. 1. (A) The spatiotemporal evolution of a river during a period of 4000 iterations. Mean river length is
1570w. The state of the river planform was recorded every 200 iterations, and a simple tracking routine
was used to find segments of sinuosity above or below a value of 3.14 and longer than 30 river width units.
This yielded a pattern of intermittent domains of an ordered (low-sinuosity) state with mean sinuosity of
2.4 (encircled). These domains coexist with a chaotic state having a mean sinuosity of -3.5. Numbers

at the left refer to the total sinuosity of each river planform. (See Fig. 3A for further details of the simulation
run.) (B) The evolution of local sinuosity (t = 3w) in space and time shows the full-scale range of
low-sinuosity domains of intermittent order (white). The black background is the chaotic (high-sinuosity)
state. The time interval spans 16,000 iterations with every 200 iterations shown [this interval is located
within a regime of stationary global sinuosity, as is that of (A)]. Mean river length is 3000w.

B

I , IJ

>-> 4
0i
0 3

0 02

10 600 3000
Iteration

5000

C

10

._

n)
O ',

Fig. 2. (A) The initial spatiotemporal evolution of a
simulated river starting with a nearly straight line,
shown at intervals of 200 time steps for the first 5000 5000 8000
iterations. Both an ordered and a chaotic state occur, Iteration
with the transition between them initiated by a cutoff
cluster. The ordered state in the lower part of the figure has reached a mature stage in which the train of
bends is still highly symmetrical around the original axis, while at the same time each bend is growing into
an asymmetrical shape (Kinoshita shape) (11). The chaotic state seen in the upper half of the figure was
initiated by a cutoff cluster occurring in the ordered state. (B) The spatiotemporal self-organization process
during the initial part of the time series in Fig. 3A (starting from a nearly straight path). After an initial growth
phase due to development of a wave form with increasing amplitude, the sinuosity falls off in steps as
neighboring bends grow to meet each other, causing a series of cutoffs. (C) Spatiotemporal self-organiza-
tion when starting from an arbitrarily curved initial path with sinuosity s = 5.0. As in (B) there is an initial rapid
growth phase as undulations begin to grow on the original convolutions, followed by two anomalously large
cutoff events that bring the sinuosity down to -1.3.

and B. That the steady state originates from
two opposing processes is confirmed by the
monotonic rise in sinuosity when the cutoff
process is suppressed (Fig. 3B). Figure 2, B
and C, demonstrates that sinuosity will go
to a stationary state around the same aver-
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age sinuosity (rr) independently of initial
conditions. This robustness of the self-orga-
nization process suggests a dynamical state
of self-organized criticality (SOC) (4, 6).

If the simulated river actually goes to
SOC, then spatial and temporal power-law
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scaling would be expected (6). The SOC two orders
model predicts that the cutoff (oxbow lake) cation that
clusters correspond to the dynamical notion with respect
of "avalanches" with a fractal size distribu- is associated
tion. This idea is confirmed by the total The bends (

distribution of single and clustered oxbow more than t
lakes [using a clustering criterion (15)], fractal dim(
which follows a power law over nearly two measured fc
orders of magnitude (Fig. 4A). I analyzed the River, Brazi
scaling properties of sinuosity fluctuations in In river i

the stationary state by rescaled range (R/S) namical stat
analysis, which is a method for identifying rence of spa
power-law scaling in time series (16). The tency as foll
R/S analysis detected power-law scaling over act to destr

A
5

-40
0

2
0 15,000

Fig. 3. (A) Time series of sinuosity evolution from the simulation of a
free meandering river with constant discharge and uniform bank
resistance at low gradient corresponding to b = 2. The initial state is
a quasistraight course (t = 500w) with random perturbations and s

1. The straight line in the stationary part of the time series is the
mean sinuosity of 3.14 + 0.34 (13). (B) Enlargement of the initial part
of the time series in (A), compared to the evolution of sinuosity if the
cutoff process does not occur.

3.5-

9
3.0-

0)

0

2.5-

of magnitude (Fig. 4B), an indi-
t the fluctuations are invariant
t to scale. Finally, the SOC state
with power-law scaling in space.
of the simulated river scale over
two orders of magnitude, with a
ension close to the dimension
or the freely meandering Jurua'
il (Fig. 4C) (3, 17, 18).
meandering simulations, the dy-
te of SOC is related to the occur-
tiotemporal chaos and intermit-
lows: In the ordered state cutoffs
roy order, whereas in the disor-

30,000

B
lb'

13
>11.
Ia 9.
0
= 7-
C

C) 5

3-
1000 2000

Iteration

4 5

0

1 2 3

3000

1.5 2.0 2.5 3.0 3.5 4.0 Iog(Lag)
log(Size of oxbow lakes; clusters and single; w2)

Fig. 4. (A) Cumulative size-frequency distribution
of oxbow lakes generated by the simulation de- 3

scribed in Fig. 1 B. The distribution includes ox-

bow lake clusters [generated according to a sim-
ple clustering criterion (15)] and the residual single o

0oxbow lakes. The straight line is a fit of the function
N(M > m) = 2.64m 0066 to 16 of 20 avalanches 1
(filled circles), where N(M > m) is the number of
avalanches larger than size m (area enclosed by 0

an avalanche). Deposition rate was chosen as
0

0.024 width units per iteration. This is the smallest
value that does not generate overlapping sand- log r(width units)

bodies (for a sandbody thickness of 3w) and at the same time gives a total depth roughly equal to the
length of section. The depth and length thresholds could then be set as equal. The value used, 26.3w, is
close to the percolation threshold in the depth direction (26.7w). (B) The RIS analysis of the sinuosity time
series of Fig. 3A between iterations 3000 and 30,000. The straight line is a fit of the function (RIS) = 1.35
(lag)0 54 to seven of the data points (filled squares) (13, 16). (C) Power-law scaling over three orders of
magnitude of a simulated (open squares) and a real (filled squares) meandering river, the Jurua River (13).
The scaling has been found by measuring the river with yardsticks of different lengths (the divider method)
(15). The straight lines are fits of the function N = ar- to the data, with D = 1.18 for the river and D = 1.28
for the simulation. The difference in the constant term is due to the different length of the river segments.

dered (chaotic) state cutoffs create order.
Each cutoff also increases the probability of
cutoff formation in its vicinity by accelerat-
ing local change, thereby giving rise to spa-
tiotemporal clusters (avalanches) of cutoffs.
This avalanche dynamics is an equalizer that
keeps the system fluctuating around a critical
state, by creating and extinguishing coexist-
ing domains of order and chaos. The simu-
lated meandering river is therefore in a state
of eternal recurrence (19).
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assumption is that olivine is near ideal,
with Mg and Fe fully disordered over Ml
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and M2, the two octahedral sites. In-
tracrystalline M-site partitioning would,
however, be expected to modify olivine's
thermodynamic stability, the diffusion
rates of M-site metals, and (potentially) its
elastic parameters. Furthermore, if signifi-
cant partitioning does occur, M-site occu-
pancies might also provide a means of
using olivine as a petrogenetic indicator
for thermometry and speedometry in a
wide range of rocks.

Crystal chemical studies of olivines,
primarily at room temperature (T) and
pressure (P), show that divalent cations
tend to order preferentially between M2,
the larger site, and M1, the more distorted
site; for example, Fe, Ni, and Zn into Ml,
and Mn and Ca into M2 (1). Early at-
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High-Temperature Study of Octahedral
Cation Exchange in Olivine by
Neutron Powder Diffraction

C. M. B. Henderson,* K. S. Knight, S. A. T. Redfern, B. J. Wood

Time-of-flight, neutron powder diffraction to 10000C provides precise octahedral site
occupancies and intersite distribution coefficients for MnMgSiO4 and MnFeSiO4 olivines.
Intersite exchange occurs in minutes down to 5000C. Equilibrium distribution coefficients
show that manganese ordering into the larger octahedral site decreases with increasing
temperature. Exchange energies are 15.7 and 10.1 kilojoules per mole for magnesium-
manganese and iron-manganese, respectively. Distribution coefficients deduced for
FeMgSiO4 olivine suggest an exchange energy of 4.8 kilojoules per mole. Intersite ex-
change energies are consistent with diffusion coefficients in the order iron > magnesium
> manganese. Geothermometry based on magnesium-manganese and iron-manganese
exchange may be possible only for samples equilibrated below 5000C.
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